
Fast Skinning
March 21st 2005
J.M.P. van Waveren

© 2005, Id Software, Inc.

Abstract
Two approaches to matrix palette skinning are presented and optimized. Furthermore

the Intel Streaming SIMD Extensions are used to exploit parallelism and get the most

out of every clock cycle. The optimized routines are well over two times faster than the

implementation in C on a Pentium 4.

1. Introduction
Presenting realistic organic models has become increasingly important in many

applications among which computer games. Such an organic model is typically

represented by a polygonal mesh often referred to as a 'skin' which continuously

changes shape with an underlying structure often referred to as a 'skeleton'. The

process of animating the mesh is referred to as 'skinning'.

On today's hardware skinning can be performed both on a general purpose CPU and a

more specialized GPU as available on many graphics cards. The speed of these GPUs

increases rapidly and maximum parallelism is exploited which makes skinning on the

GPU favorable in many cases. However, for some applications it may be beneficial to

perform skinning on the CPU.

Performing skinning on the CPU improves compatibil ity across a wide range of systems.

Older systems may have graphics cards (like the GeForce2 and GeForce4MX) that do not

support the necessary features to perform skinning on the GPU.

Many applications also need the post-transformed data for shadow volumes and collision

detection. Current graphics cards do not allow this data to be retrieved after it has

been processed. Skinning on the CPU however, allows easy access to the animated

mesh while stil l allowing the GPU to do the lighting and clipping calculations. The

calculation of shadow volumes may be offloaded completely to the GPU. However, this is

not particularly efficient on today's hardware [10].

When skinning on the GPU the number of joints from the skeleton that influence each

vertex must be static for each batch of triangles [9]. This can lead to many wasted

transformations on the GPU because the maximum number of joint influences will be

used for all vertices in a single batch.

Some rendering techniques require a mesh to be drawn multiple times often to

temporary buffers or surfaces. For instance shadow volume and shadow map rendering

requires a mesh to be processed for every light source interacting with the mesh. When

a mesh needs to be rendered multiple times any vertex transformations have to be

recalculated on the GPU for every rendering pass because intermediate results cannot

be saved. This may cause the performance to be limited by vertex program execution

on the GPU. When this happens performance may improve when vertices are

transformed on the CPU where any transformations only need to be performed once.

On current hardware the number of vertices that is processed in a single batch has to

be maximized for optimal performance [11,12]. The batch sizes should be at least

several thousands of triangles. When skinning on the GPU this may be hard to achieve

because the number of joints in the skeleton used for one triangle mesh is restricted by

vertex program constant space. The program constants are typically used to store the

transformation matrices for the joints of a skeleton.

The above screenshots show a model from the computer game DOOM III with a skeleton

with 128 joints. The original hardware vertex program specification has a fixed limit of

96 vertex program constants where each constant is a vector with four floating point

components. Even when 3x4 matrices or quaternions are used this imposes a significant

limit on the maximum number of joints that can be used for a single mesh. This means

meshes that use more joints than can be stored in the vertex program constants like

the one in the model from DOOM III above have to be split into smaller meshes which

reduces efficiency and increases the number of duplicate vertices [9].

1.1 Previous Work

Skeletal animation systems are not new [2, 3] and are used in many applications. On

today's hardware skeletal animation of meshes can be performed on both the CPU and

the GPU. As the number of triangles used to present realistic models increases skinning

can become a time consuming process on both the CPU and GPU. Optimizing the

skinning process is essential for many applications and hardware features like

specialized instruction sets are often exploited for this purpose [8].

1.2 Layout

Section 2 shows some properties of and the data used for matrix palette skinning.

Section 3 describes one approach to matrix palette skinning. Another approach is

presented in section 4. In section 5 the SSE3 instruction set is used to further improve

the performance. The results of the optimizations are presented in section 6 and several

conclusions are drawn in section 7.

2. Matrix Palette Skinning
Matrix palette skinning animates a mesh where the vertices are transformed using a

palette of the matrices that describe the joint transformations of a skeleton. To

calculate the position and other properties of each vertex a selection of the joint

matrices are weighted and used to transform a set of base vectors.

A vertex of the mesh is described in code as follows.

struct Vec4 {
 float x, y, z, w;
};

struct Vertex {
 Vec4 position;
 Vec4 normal;
 Vec4 tangent;
};

The vertex uses 4D vectors for the position, normal and tangent while 3D vectors may

be sufficient. However, using 4D vectors improves memory alignment and the last

component of the 4D vectors could also be used for other purposes. The 'tangent.w'

could for instance be used to store a texture polarity sign. The second tangent can then

be derived using a cross product between the normal and the tangent where the vector

is fl ipped based on the texture polarity.

bitangent.x = tangent.w * (normal.y * tangent.z - normal.z * tangent.y);
bitangent.y = tangent.w * (normal.z * tangent.x - normal.x * tangent.z);
bitangent.z = tangent.w * (normal.x * tangent.y - normal.y * tangent.x);

For some of the vertex properties 3D vectors could be used and interleaved with new

properties, l ike 4 byte colors, to maintain alignment. However, simple 4D vectors are

used here to get good alignment with minimal complexity.

A joint transformation is described with a 3x4 matrix as follows.

 Struct JointMat {
 float mat[3*4];
};

Such a 3x4 matrix consists of a 3x3 orthonormal rotation matrix and a 3D translation

vector. The first three elements of each row are from the 3x3 rotation matrix and the

last element of each row is a translation along one of the coordinate axes.

A single influence or joint weight from the palette is described in code as follows.

struct JointWeight {
 float weight;
 int jointMatOffset;
 int nextVertexOffset;
};

The 'weight' is the scale factor for the influence. Usually the weights for all influences

for a single vertex add up to one.

The 'jointMatOffset' is the offset in bytes to the joint matrix associated with the

influence. This byte offset can be added directly to the base pointer of an array with all

the joint matrices to get the correct matrix for an influence.

The 'nextVertexOffset' is the offset in bytes to the first weight for the next vertex and

is used to tell when the last joint influence for a vertex has been processed. The last

joint influence is found when this offset equals the size of a 'JointWeight' object. The

'nextVertexOffset' also allows easy capping of the number of influences to one influence

per vertex which could be used for a very simple approach to LOD. This does require

that the joint influences are sorted with decreasing weight. Only the first joint influence

would be used with an assumed weight of one, and the 'nextVertexOffset' would be used

to jump right to the first influence for the next vertex. Some snapping may occur when

the number of joint influences changes for a vertex. However, for distant models this

may not be or hardly noticeable while decreasing the number of processed influences

may improve performance considerably.

3. Skinning Without Normals Or Tangents
The following approach to matrix palette skinning is best used when only vertex

positions are needed. For instance for collision detection the vertex normals and

tangent vectors are usually not required. The vertex positions may also be used to

create shadow volumes or render shadow maps for a skinned mesh that is not visible

itself but stil l casts shadows on visible geometry. This approach can also be used to

skin all meshes for shadow volumes while the visible mesh is skinned on the GPU with

normals and tangents. For some applications this may be the perfect trade between

using the CPU and the GPU.

For this approach a set of base vectors are stored relative to the joints that transform

them. If a vertex is influenced by more than one joint, multiple base vectors are stored,

one for each joint with its weighting. Each base vector is multiplied by its associated

weight and transformed with the appropriate joint matrix. The following pseudo code

shows how one vertex is transformed in this manner.

position = matrix0 * base0 * weight0;
position += matrix1 * base1 * weight1;
position += matrix2 * base2 * weight2;
...

The 'base?' and 'weight?' variables are the base vectors and weights for each influence.

The 'matrix?' variables are the joint matrices associated with the influences.

Because both a base vector and a weight are stored for every influence the base vectors

can be premultiplied with the weights which eliminates several multiplications from the

real-time skinning process. The following pseudo code shows the transformation of one

vertex with the weighted base vectors.

position = matrix0 * weightedBase0;
position += matrix1 * weightedBase1;
position += matrix2 * weightedBase2;
...

The following C/C++ code implements the complete skinning routine.

void MulMatVec(Vec4 &result, const JointMat &m, const Vec4 &v) const {
 result.x = m.mat[0 * 4 + 0] * v.x + m.mat[0 * 4 + 1] * v.y + m.mat[0 * 4 + 2] * v.z + m.mat[0 * 4 + 3] * v.w;
 result.y = m.mat[1 * 4 + 0] * v.x + m.mat[1 * 4 + 1] * v.y + m.mat[1 * 4 + 2] * v.z + m.mat[1 * 4 + 3] * v.w;
 result.z = m.mat[2 * 4 + 0] * v.x + m.mat[2 * 4 + 1] * v.y + m.mat[2 * 4 + 2] * v.z + m.mat[2 * 4 + 3] * v.w;
}

void MadMatVec(Vec4 &result, const JointMat &m, const Vec4 &v) const {
 result.x += m.mat[0 * 4 + 0] * v.x + m.mat[0 * 4 + 1] * v.y + m.mat[0 * 4 + 2] * v.z + m.mat[0 * 4 + 3] * v.w;
 result.y += m.mat[1 * 4 + 0] * v.x + m.mat[1 * 4 + 1] * v.y + m.mat[1 * 4 + 2] * v.z + m.mat[1 * 4 + 3] * v.w;
 result.z += m.mat[2 * 4 + 0] * v.x + m.mat[2 * 4 + 1] * v.y + m.mat[2 * 4 + 2] * v.z + m.mat[2 * 4 + 3] * v.w;
}

void TransformVerts(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 *base, const JointWeight
*weights, int numWeights) {
 int i, j;
 const byte *jointsPtr = (byte *)joints;

 for(j = 0, i = 0; i < numVerts; i++, j++) {
 idVec4 v;

 MulMatVec(v, (*(JointMat *) (jointsPtr + weights[j].jointMatOffset)), base[j]);
 while(weights[j].nextVertexOffset != sizeof(JointWeight)) {
 j++;
 MadMatVec(v, (*(JointMat *) (jointsPtr + weights[j].jointMatOffset)), base[j]);
 }

 verts[i].position.x = v.x;
 verts[i].position.y = v.y;
 verts[i].position.z = v.z;
 }
}

Because the number of joint influences may be different for each vertex it is not trivial

to exploit parallelism through increased throughput. The vertices could be grouped

based on the number of influences but this can decrease the performance on today's

graphics hardware where locality of vertices is essential for efficient caching.

Fortunately the above routine is well suited for exploiting parallelism with a compressed

calculation. The matrix vector multiplications involve many independent operations that

can be executed in parallel. The Intel Streaming SIMD Extensions can be used to exploit

this parallelism.

Each matrix vector multiplication involves 9 horizontal additions that would typically

require a swizzle before they can be executed in parallel with SSE instructions.

However, these horizontal additions can be postponed until after all the joint influences

are added together. Instead of accumulating the transformed base vectors the partial

matrix vector products are accumulated and the horizontal additions are performed

after looping over the joint influences.

The complete SSE optimized routine is listed in appendix A. The swizzle for the

horizontal additions minimizes the number of instructions and dependencies. The SSE2

instruction 'pshufd' is used to separate the last two scalars that need to be added

together. The 'pshufd' instruction is meant to be used for double word integer data.

However, since every 32 bits floating point bit pattern represents a valid integer this

instruction can be used on floating point data without problems.

The routine listed in appendix A assumes the list with joint matrices and the list with

base vectors are 16 byte aligned. The routine works with any alignment for the list with

weights and the list with vertices. However, for optimal performance the list with

vertices should be at least 16 byte aligned and the size of vertex objects should be at

least a multiple of 16 bytes such that consecutive vertices in an array are all aligned on

a 16 byte boundary.

4. Skinning With Normals And Tangents
When not only the vertex position is needed but also the vertex normal and tangent

vectors, it is more efficient to first accumulate weighted joint matrices and use this new

matrix to transform the vertex position, normal and tangents in model space. For this

approach a base pose of a mesh is transformed. The vertices of this base pose are

stored only once in model space even when influenced by multiple joints. These vertices

are not transformed directly by the joint matrices of the animated skeleton but the joint

matrices are first multiplied with the inverse joint matrices for the base pose. These

inverse joint matrices can be precalculated because the same base pose is used during

all animation. The joint matrices of the animated skeleton can then be multiplied with

these inverse joint matrices of the base pose before skinning the mesh. The following

pseudo code shows how a single vertex is transformed.

accumulated = matrix0 * weight0;
accumulated += matrix1 * weight1;
accumulated += matrix2 * weight2;
...
position = accumulated * basePosition;
normal = accumulated * baseNormal;
tangent = accumulated * baseTangent;

The weights are the same as used for the approach discussed in the previous section.

However, the joint matrices have been premultiplied with the inverse joint matrices of

the base pose. The following C/C++ code implements the complete skinning routine.

void MulMatScalar(JointMat &result, const JointMat &mat, const float s) {
 result.mat[0 * 4 + 0] = s * mat.mat[0 * 4 + 0];
 result.mat[0 * 4 + 1] = s * mat.mat[0 * 4 + 1];
 result.mat[0 * 4 + 2] = s * mat.mat[0 * 4 + 2];
 result.mat[0 * 4 + 3] = s * mat.mat[0 * 4 + 3];
 result.mat[1 * 4 + 0] = s * mat.mat[1 * 4 + 0];
 result.mat[1 * 4 + 1] = s * mat.mat[1 * 4 + 1];
 result.mat[1 * 4 + 2] = s * mat.mat[1 * 4 + 2];
 result.mat[1 * 4 + 3] = s * mat.mat[1 * 4 + 3];
 result.mat[2 * 4 + 0] = s * mat.mat[2 * 4 + 0];
 result.mat[2 * 4 + 1] = s * mat.mat[2 * 4 + 1];
 result.mat[2 * 4 + 2] = s * mat.mat[2 * 4 + 2];
 result.mat[2 * 4 + 3] = s * mat.mat[2 * 4 + 3];
}

void MadMatScalar(JointMat &result, const JointMat &mat, const float s) {
 result.mat[0 * 4 + 0] += s * mat.mat[0 * 4 + 0];
 result.mat[0 * 4 + 1] += s * mat.mat[0 * 4 + 1];
 result.mat[0 * 4 + 2] += s * mat.mat[0 * 4 + 2];
 result.mat[0 * 4 + 3] += s * mat.mat[0 * 4 + 3];
 result.mat[1 * 4 + 0] += s * mat.mat[1 * 4 + 0];
 result.mat[1 * 4 + 1] += s * mat.mat[1 * 4 + 1];
 result.mat[1 * 4 + 2] += s * mat.mat[1 * 4 + 2];
 result.mat[1 * 4 + 3] += s * mat.mat[1 * 4 + 3];
 result.mat[2 * 4 + 0] += s * mat.mat[2 * 4 + 0];
 result.mat[2 * 4 + 1] += s * mat.mat[2 * 4 + 1];
 result.mat[2 * 4 + 2] += s * mat.mat[2 * 4 + 2];
 result.mat[2 * 4 + 3] += s * mat.mat[2 * 4 + 3];
}

void MulMatVec(Vec4 &result, cont JointMat &m, const Vec4 &v) const {
 result.x = m.mat[0 * 4 + 0] * v.x + m.mat[0 * 4 + 1] * v.y + m.mat[0 * 4 + 2] * v.z + m.mat[0 * 4 + 3] *
v.w;
 result.y = m.mat[1 * 4 + 0] * v.x + m.mat[1 * 4 + 1] * v.y + m.mat[1 * 4 + 2] * v.z + m.mat[1 * 4 + 3] *

v.w;
 result.z = m.mat[2 * 4 + 0] * v.x + m.mat[2 * 4 + 1] * v.y + m.mat[2 * 4 + 2] * v.z + m.mat[2 * 4 + 3] *
v.w;
}

void TransformVertsAndTangents(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 *base,
const JointWeight *weights, const int numWeights) {
 int i, j;
 const byte *jointsPtr = (byte *)joints;

 for(j = i = 0; i < numVerts; i++, j++) {
 JointMat mat;

 MulMatScalar(mat, *(JointMat *) (jointsPtr + weights[j].jointMatOffset), weights[j].weight);
 while(weights[j].nextVertexOffset != JOINTWEIGHT_SIZE) {
 j++;
 MadMatScalar(mat, *(JointMat *) (jointsPtr + weights[j].jointMatOffset), weights[j].weight);
 }

 MulMatVec(verts[i].position, mat, base[i*3+0]);
 MulMatVec(verts[i].normal, mat, base[i*3+1]);
 MulMatVec(verts[i].tangent, mat, base[i*3+2]);
 }
}

This routine only transforms the position, normal and first tangent vector. Where

necessary the second tangent vector can be trivially derived on the GPU with a cross

product between the normal and first tangent vector. If it is not possible to calculate

the second tangent vector on the GPU the above routine can be trivially extended to

transform an additional vector.

The normal and tangent vector may become denormalized when influenced by multiple

joint matrices because the vectors are interpolated linearly with the scaled matrices.

However, most vertices are influenced by very few joint matrices and the

denormalization is minimal. For most applications the denormalization is also not a

serious problem. Where necessary the vectors can be trivially re-normalized on the GPU

with very few instructions.

The above routine is also optimized using the Intel Streaming SIMD Extensions to

exploit parallelism with a compressed calculation. The complete SSE optimized routine

is l isted in appendix B. The routine assumes the same alignment of the input arrays as

the routine presented in the previous section.

5. SSE3
For the matrix vector multiplications both skinning routines use horizontal additions

with several swizzle instructions. The following code is for instance used to perform the

first eight of the in total nine horizontal additions of the floating point values stored in

the registers 'xmm0', 'xmm1' and 'xmm2.

// xmm0 = m0, m1, m2, t0
// xmm1 = m3, m4, m5, t1
// xmm2 = m6, m7, m8, t2

movaps xmm6, xmm0 // xmm6 = m0, m1, m2, t0
unpcklps xmm6, xmm1 // xmm6 = m0, m3, m1, m4
unpckhps xmm0, xmm1 // xmm1 = m2, m5, t0, t1
addps xmm6, xmm0 // xmm6 = m0+m2, m3+m5, m1+t0, m4+t1

movaps xmm7, xmm2 // xmm7 = m6, m7, m8, t2
movlhps xmm2, xmm6 // xmm2 = m6, m7, m0+m2, m3+m5
movhlps xmm6, xmm7 // xmm6 = m8, t2, m1+t0, m4+t1
addps xmm2, xmm6 // xmm2 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

The SSE3 instruction set available on the Intel® Pentium® 4 Processor on 90nm

Technology has an instruction to horizontally add the floating point values of two

registers. The code below does exactly the same as the above code. However, the code

below uses only two 'haddps' instructions.

haddps xmm0, xmm1 // xmm0 = m0+m1, m2+t0, m3+m4, m5+t1
haddps xmm2, xmm0 // xmm2 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

The 'haddps' instruction has high latency on the Pentium 4 but nevertheless changing

the above horizontal additions to use this instruction makes the skinning routine faster.

The last horizontal addition as shown in the following code is not replaced by the

'haddps' instruction.

pshufd xmm3, xmm2, R_SHUFFLE_D(1, 0, 2, 3)
addss xmm3, xmm2

Using the 'haddps' instruction instead of the above code would introduce a dependency

and together with the high latency of the 'haddps' instruction the skinning routine

would actually become slower.

The routines using the SSE3 instruction 'haddps' are listed in appendix C and D.

6. Results
The various routines have been tested on an Intel® Pentium® 4 Processor on 130nm

Technology and an Intel® Pentium® 4 Processor on 90nm Technology. The routines

operated on a list of 1024 vertices with 2 joint weights per vertex. The total number of

clock cycles and the number of clock cycles per vertex for each routine on the different

CPUs are listed in the following table.

Hot Cache Clock Cycle Counts

Routine

P4 130nm

total clock

cycles

P4 130nm clock

cycles per element

P4 90nm total

clock cycles

P4 90nm clock cycles

per element

TransformVerts (C) 107008 105 130005 127

TransformVerts (SSE) 33784 33 43956 43

TransformVerts (SSE3) - - 41963 41

TransformVertsAndTangents (C) 196056 192 230103 225

TransformVertsAndTangents

(SSE)
76324 75 89775 88

TransformVertsAndTangents

(SSE3)
- - 81855 80

7. Conclusion
Whether or not skinning is best performed on the GPU or the CPU should be decided on

a per application or even on a per object basis. For objects that are best skinned on the

CPU the routines presented here can be used for optimal performance.

The approach to matrix palette skinning presented in section 3 delivers the best

performance when only the vertex positions are required. However, when vertex

normals and tangents are required as well the second approach to matrix palette

skinning presented in section 4 should be used for optimal performance.

The Intel SIMD Extension have been used to optimize both approaches to matrix palette

skinning on the CPU. The SSE optimized routines are between two and three times

faster than their C counterparts.

8. References

1. Slashing Through Real-Time Character Animation

Jeff Lander

Game Developer Magazine, April 1998

Available Online: http://www.darwin3d.com/gdm1998.htm#gdm0498

2.

Skin Them Bones: Game Programming for the Web Generation

Jeff Lander

Game Developer Magazine, May 1998

Available Online: http://www.darwin3d.com/gdm1998.htm#gdm0598

3. Over My Dead, Polygonal Body

Jeff Lander

Game Developer Magazine, October 1999

Available Online: http://www.darwin3d.com/gdm1999.htm#gdm1099

4. Run-Time Skin Deformation

Jason Weber

Game Developers Conference proceedings, 2000

Available Online:

http://www.intel.com/technology/systems/3d/skeletal.htm

5. Real-Time Character Animation for Computer Games

Eike F. Anderson

National Centre for Computer Animation, Bournemouth University, 2001

6. Character Animation for Real-time Applications

Michael Putz, Klaus Hufnagl

Central European Seminar on Computer Graphics, 2002

http://www.darwin3d.com/gdm1998.htm#gdm0498
http://www.darwin3d.com/gdm1998.htm#gdm0598
http://www.darwin3d.com/gdm1999.htm#gdm1099
http://www.intel.com/technology/systems/3d/skeletal.htm

Available Online: http://www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-

2002/

7. 3D Games, Vol. 2: Animation and Advanced Real-Time Rendering

Alan Watt and Fabio Policarpo

Addison Wesley, January 17, 2003

ISBN: 0201787067

8. Optimized CPU-based Skinning for 3D Games

Leigh Davies

Intel, August 2004

Available Online: http://www.intel.com/cd/ids/developer/asmo-

na/eng/segments/games/172123.htm

9. Mesh Skinning

Sébastian Dominé

nVidia, 2001

Available Online: http://developer.nvidia.com/object/skinning.html

10. Optimized Stencil Shadow Volumes

Cass Everitt, Mark J. Kilgard

Game Developer Conference, 2003

Available Online:

http://developer.nvidia.com/docs/IO/8230/GDC2003_ShadowVolumes.pdf

11. Optimizing the Graphics Pipeline

Cem Cebenoyan, Matthias Wloka

Game Developer Conference, 2003

Available Online:

http://developer.nvidia.com/docs/IO/8230/GDC2003_PipelinePerformance.

pdf

12. GPU Gems - 28. Graphics Pipeline Performance

Cem Cebenoyan

Randima Fernando (editor)

Addison-Wesley, 2004

Appendix A
/*
 SSE Optimized Skinning Without Normals or Tangents
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,

http://www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-2002/
http://www.cg.tuwien.ac.at/studentwork/CESCG/CESCG-2002/
http://www.intel.com/cd/ids/developer/asmo-na/eng/segments/games/172123.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/segments/games/172123.htm
http://developer.nvidia.com/object/skinning.html
http://developer.nvidia.com/docs/IO/8230/GDC2003_ShadowVolumes.pdf
http://developer.nvidia.com/docs/IO/8230/GDC2003_PipelinePerformance.pdf
http://developer.nvidia.com/docs/IO/8230/GDC2003_PipelinePerformance.pdf

 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

struct Vec4 {
 float x, y, z, w;
};

struct JointMat {
 float mat[3*4];
};

struct JointWeight {
 float weight; // joint weight
 int jointMatOffset; // offset in bytes to the joint matrix
 int nextVertexOffset; // offset in bytes to the first weight for the next vertex
};

struct Vertex {
 Vec4 position;
 Vec4 normal;
 Vec4 tangent;
};

// offsets for SIMD code
#define BASEVECTOR_SIZE (4*4) // sizeof(idVec4)
#define JOINTWEIGHT_SIZE (3*4) // sizeof(JointWeight)
#define JOINTWEIGHT_WEIGHT_OFFSET (0*4) // offsetof(JointWeight, weight)
#define JOINTWEIGHT_JOINTMATOFFSET_OFFSET (1*4) // offsetof(JointWeight, jointMatOffset)
#define JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET (2*4) // offsetof(JointWeight, nextVertexOffset)
#define VERTEX_SIZE (12*4) // sizeof(Vertex)
#define VERTEX_POSITION_OFFSET (0*4) // offsetof(Vertex, position)
#define VERTEX_NORMAL_OFFSET (4*4) // offsetof(Vertex, normal)
#define VERTEX_TANGENT_OFFSET (8*4) // offsetof(Vertex, tangent)

void TransformVerts(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 *base, const
JointWeight *weights, const int numWeights) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(base);

 __asm
 {
 mov eax, numVerts
 test eax, eax
 jz done
 imul eax, VERTEX_SIZE

 mov ecx, verts
 mov edx, weights
 mov esi, base
 mov edi, joints

 add ecx, eax
 neg eax

 loopVert:
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 movaps xmm2, [esi]
 add edx, JOINTWEIGHT_SIZE
 movaps xmm0, xmm2
 add esi, BASEVECTOR_SIZE
 movaps xmm1, xmm2

 mulps xmm0, [edi+ebx+ 0] // xmm0 = m0, m1, m2, t0
 mulps xmm1, [edi+ebx+16] // xmm1 = m3, m4, m5, t1
 mulps xmm2, [edi+ebx+32] // xmm2 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 je doneWeight

 loopWeight:
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 movaps xmm5, [esi]
 add edx, JOINTWEIGHT_SIZE
 movaps xmm3, xmm5
 add esi, BASEVECTOR_SIZE
 movaps xmm4, xmm5

 mulps xmm3, [edi+ebx+ 0] // xmm3 = m0, m1, m2, t0
 mulps xmm4, [edi+ebx+16] // xmm4 = m3, m4, m5, t1
 mulps xmm5, [edi+ebx+32] // xmm5 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 addps xmm0, xmm3
 addps xmm1, xmm4
 addps xmm2, xmm5

 jne loopWeight

 doneWeight:
 add eax, VERTEX_SIZE

 movaps xmm6, xmm0 // xmm6 = m0, m1, m2, t0
 unpcklps xmm6, xmm1 // xmm6 = m0, m3, m1, m4
 unpckhps xmm0, xmm1 // xmm1 = m2, m5, t0, t1
 addps xmm6, xmm0 // xmm6 = m0+m2, m3+m5, m1+t0, m4+t1

 movaps xmm7, xmm2 // xmm7 = m6, m7, m8, t2
 movlhps xmm2, xmm6 // xmm2 = m6, m7, m0+m2, m3+m5
 movhlps xmm6, xmm7 // xmm6 = m8, t2, m1+t0, m4+t1
 addps xmm6, xmm2 // xmm6 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+0], xmm6

 pshufd xmm5, xmm6, R_SHUFFLE_D(1, 0, 2, 3) // xmm7 = m7+t2, m6+m8
 addss xmm5, xmm6 // xmm5 = m6+m8+m7+t2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+8], xmm5

 jl loopVert
 done:
 }
}

Appendix B
/*
 SSE Optimized Skinning With Normals and Tangents
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void TransformVertsAndTangents(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 *base,
const JointWeight *weights, const int numWeights) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(base);

 __asm
 {
 mov eax, numVerts
 test eax, eax
 jz done
 imul eax, VERTEX_SIZE

 mov ecx, verts
 mov edx, weights
 mov esi, base
 mov edi, joints

 add ecx, eax
 neg eax

 loopVert:
 movss xmm0, [edx+JOINTWEIGHT_WEIGHT_OFFSET]
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]

 shufps xmm0, xmm0, R_SHUFFLE_PS(0, 0, 0, 0)
 add edx, JOINTWEIGHT_SIZE
 movaps xmm1, xmm0
 add esi, 3*BASEVECTOR_SIZE
 movaps xmm2, xmm0

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 mulps xmm0, [edi+ebx+ 0] // xmm0 = m0, m1, m2, t0
 mulps xmm1, [edi+ebx+16] // xmm1 = m3, m4, m5, t1
 mulps xmm2, [edi+ebx+32] // xmm2 = m6, m7, m8, t2

 je doneWeight

 loopWeight:
 movss xmm3, [edx+JOINTWEIGHT_WEIGHT_OFFSET]
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 shufps xmm3, xmm3, R_SHUFFLE_PS(0, 0, 0, 0)
 add edx, JOINTWEIGHT_SIZE
 movaps xmm4, xmm3
 movaps xmm5, xmm3

 mulps xmm3, [edi+ebx+ 0] // xmm3 = m0, m1, m2, t0
 mulps xmm4, [edi+ebx+16] // xmm4 = m3, m4, m5, t1
 mulps xmm5, [edi+ebx+32] // xmm5 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 addps xmm0, xmm3
 addps xmm1, xmm4
 addps xmm2, xmm5

 jne loopWeight

 doneWeight:
 add eax, VERTEX_SIZE

 // transform vertex
 movaps xmm3, [esi-3*BASEVECTOR_SIZE]
 movaps xmm4, xmm3
 movaps xmm5, xmm3

 mulps xmm3, xmm0
 mulps xmm4, xmm1
 mulps xmm5, xmm2

 movaps xmm6, xmm3 // xmm6 = m0, m1, m2, t0
 unpcklps xmm6, xmm4 // xmm6 = m0, m3, m1, m4
 unpckhps xmm3, xmm4 // xmm4 = m2, m5, t0, t1
 addps xmm6, xmm3 // xmm6 = m0+m2, m3+m5, m1+t0, m4+t1

 movaps xmm7, xmm5 // xmm7 = m6, m7, m8, t2
 movlhps xmm5, xmm6 // xmm5 = m6, m7, m0+m2, m3+m5
 movhlps xmm6, xmm7 // xmm6 = m8, t2, m1+t0, m4+t1
 addps xmm6, xmm5 // xmm6 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+0], xmm6

 pshufd xmm7, xmm6, R_SHUFFLE_D(1, 0, 2, 3) // xmm7 = m7+t2, m6+m8
 addss xmm7, xmm6 // xmm7 = m6+m8+m7+t2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+8], xmm7

 // transform normal
 movaps xmm3, [esi-2*BASEVECTOR_SIZE]
 movaps xmm4, xmm3
 movaps xmm5, xmm3

 mulps xmm3, xmm0
 mulps xmm4, xmm1
 mulps xmm5, xmm2

 movaps xmm6, xmm3 // xmm6 = m0, m1, m2, t0
 unpcklps xmm6, xmm4 // xmm6 = m0, m3, m1, m4
 unpckhps xmm3, xmm4 // xmm3 = m2, m5, t0, t1
 addps xmm6, xmm3 // xmm6 = m0+m2, m3+m5, m1+t0, m4+t1

 movaps xmm7, xmm5 // xmm7 = m6, m7, m8, t2
 movlhps xmm5, xmm6 // xmm5 = m6, m7, m0+m2, m3+m5
 movhlps xmm6, xmm7 // xmm6 = m8, t2, m1+t0, m4+t1
 addps xmm6, xmm5 // xmm6 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_NORMAL_OFFSET+0], xmm6

 pshufd xmm7, xmm6, R_SHUFFLE_D(1, 0, 2, 3) // xmm7 = m7+t2, m6+m8
 addss xmm7, xmm6 // xmm7 = m6+m8+m7+t2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_NORMAL_OFFSET+8], xmm7

 // transform first tangent
 movaps xmm3, [esi-1*BASEVECTOR_SIZE]

 mulps xmm0, xmm3
 mulps xmm1, xmm3
 mulps xmm2, xmm3

 movaps xmm6, xmm0 // xmm6 = m0, m1, m2, t0
 unpcklps xmm6, xmm1 // xmm6 = m0, m3, m1, m4
 unpckhps xmm0, xmm1 // xmm1 = m2, m5, t0, t1
 addps xmm6, xmm0 // xmm6 = m0+m2, m3+m5, m1+t0, m4+t1

 movaps xmm7, xmm2 // xmm7 = m6, m7, m8, t2
 movlhps xmm2, xmm6 // xmm2 = m6, m7, m0+m2, m3+m5
 movhlps xmm6, xmm7 // xmm6 = m8, t2, m1+t0, m4+t1
 addps xmm6, xmm2 // xmm6 = m6+m8, m7+t2, m0+m1+m2+t0, m3+m4+m5+t1

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_TANGENT_OFFSET+0], xmm6

 pshufd xmm7, xmm6, R_SHUFFLE_D(1, 0, 2, 3) // xmm7 = m7+t2, m6+m8
 addss xmm7, xmm6 // xmm7 = m6+m8+m7+t2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_TANGENT_OFFSET+8], xmm7

 jl loopVert
 done:
 }
}

Appendix C
/*
 SSE3 Optimized Skinning Without Normals or Tangents
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void TransformVerts_SSE3(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4 *base, const
JointWeight *weights, const int numWeights) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(base);

 __asm
 {
 mov eax, numVerts
 test eax, eax
 jz done
 imul eax, VERTEX_SIZE

 mov ecx, verts
 mov edx, weights
 mov esi, base
 mov edi, joints

 add ecx, eax
 neg eax

 loopVert:

 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 movaps xmm2, [esi]
 add edx, JOINTWEIGHT_SIZE
 movaps xmm0, xmm2
 add esi, BASEVECTOR_SIZE
 movaps xmm1, xmm2

 mulps xmm0, [edi+ebx+ 0] // xmm0 = m0, m1, m2, t0
 mulps xmm1, [edi+ebx+16] // xmm1 = m3, m4, m5, t1
 mulps xmm2, [edi+ebx+32] // xmm2 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 je doneWeight

 loopWeight:
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 movaps xmm5, [esi]
 add edx, JOINTWEIGHT_SIZE
 movaps xmm3, xmm5
 add esi, BASEVECTOR_SIZE
 movaps xmm4, xmm5

 mulps xmm3, [edi+ebx+ 0] // xmm3 = m0, m1, m2, t0
 mulps xmm4, [edi+ebx+16] // xmm4 = m3, m4, m5, t1
 mulps xmm5, [edi+ebx+32] // xmm5 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 addps xmm0, xmm3
 addps xmm1, xmm4
 addps xmm2, xmm5

 jne loopWeight

 doneWeight:
 add eax, VERTEX_SIZE

 haddps xmm0, xmm1
 haddps xmm2, xmm0

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+0], xmm2

 pshufd xmm3, xmm2, R_SHUFFLE_D(1, 0, 2, 3)
 addss xmm3, xmm2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+8], xmm3

 jl loopVert
 done:
 }
}

Appendix D
/*
 SSE3 Optimized Skinning With Normals and Tangents
 Copyright (C) 2005 Id Software, Inc.
 Written by J.M.P. van Waveren

 This code is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This code is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.
*/

void TransformVertsAndTangents_SSE3(Vertex *verts, const int numVerts, const JointMat *joints, const Vec4
*base, const JointWeight *weights, const int numWeights) {

 assert_16_byte_aligned(joints);
 assert_16_byte_aligned(base);

 __asm
 {

 mov eax, numVerts
 test eax, eax
 jz done
 imul eax, VERTEX_SIZE

 mov ecx, verts
 mov edx, weights
 mov esi, base
 mov edi, joints

 add ecx, eax
 neg eax

 loopVert:
 movss xmm2, [edx+JOINTWEIGHT_WEIGHT_OFFSET]
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 shufps xmm2, xmm2, R_SHUFFLE_PS(0, 0, 0, 0)
 add edx, JOINTWEIGHT_SIZE
 movaps xmm0, xmm2
 add esi, 3*BASEVECTOR_SIZE
 movaps xmm1, xmm2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 mulps xmm0, [edi+ebx+ 0] // xmm0 = m0, m1, m2, t0
 mulps xmm1, [edi+ebx+16] // xmm1 = m3, m4, m5, t1
 mulps xmm2, [edi+ebx+32] // xmm2 = m6, m7, m8, t2

 je doneWeight

 loopWeight:
 movss xmm5, [edx+JOINTWEIGHT_WEIGHT_OFFSET]
 mov ebx, dword ptr [edx+JOINTWEIGHT_JOINTMATOFFSET_OFFSET]
 shufps xmm5, xmm5, R_SHUFFLE_PS(0, 0, 0, 0)
 add edx, JOINTWEIGHT_SIZE
 movaps xmm3, xmm5
 movaps xmm4, xmm5

 mulps xmm3, [edi+ebx+ 0] // xmm3 = m0, m1, m2, t0
 mulps xmm4, [edi+ebx+16] // xmm4 = m3, m4, m5, t1
 mulps xmm5, [edi+ebx+32] // xmm5 = m6, m7, m8, t2

 cmp dword ptr [edx-JOINTWEIGHT_SIZE+JOINTWEIGHT_NEXTVERTEXOFFSET_OFFSET], JOINTWEIGHT_SIZE

 addps xmm0, xmm3
 addps xmm1, xmm4
 addps xmm2, xmm5

 jne loopWeight

 doneWeight:
 add eax, VERTEX_SIZE

 // transform vertex, normal and first tangent
 movaps xmm3, [esi-3*BASEVECTOR_SIZE]
 movaps xmm4, xmm3
 movaps xmm5, xmm3

 mulps xmm3, xmm0
 mulps xmm4, xmm1
 mulps xmm5, xmm2

 haddps xmm3, xmm4

 movaps xmm6, [esi-2*BASEVECTOR_SIZE]

 haddps xmm5, xmm3

 movaps xmm3, xmm6

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+0], xmm5

 pshufd xmm4, xmm5, R_SHUFFLE_D(1, 0, 2, 3)
 addss xmm4, xmm5

 movaps xmm5, xmm6

 movss [ecx+eax-VERTEX_SIZE+VERTEX_POSITION_OFFSET+8], xmm4

 mulps xmm3, xmm0
 mulps xmm6, xmm1

 mulps xmm5, xmm2

 movaps xmm7, [esi-1*BASEVECTOR_SIZE]

 haddps xmm3, xmm6

 mulps xmm0, xmm7
 mulps xmm1, xmm7
 mulps xmm2, xmm7

 haddps xmm5, xmm3

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_NORMAL_OFFSET+0], xmm5

 haddps xmm0, xmm1

 pshufd xmm4, xmm5, R_SHUFFLE_D(1, 0, 2, 3)
 addss xmm4, xmm5

 movss [ecx+eax-VERTEX_SIZE+VERTEX_NORMAL_OFFSET+8], xmm4

 haddps xmm2, xmm0

 movhps [ecx+eax-VERTEX_SIZE+VERTEX_TANGENT_OFFSET+0], xmm2

 pshufd xmm7, xmm2, R_SHUFFLE_D(1, 0, 2, 3)
 addss xmm7, xmm2

 movss [ecx+eax-VERTEX_SIZE+VERTEX_TANGENT_OFFSET+8], xmm7

 jl loopVert

 done:
 }
}

	Abstract
	Introduction
	Previous Work
	Layout

	Matrix Palette Skinning
	Skinning Without Normals Or Tangents
	Skinning With Normals And Tangents
	SSE3
	Results
	Conclusion
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Fast Skinning.pdf
	Abstract
	1. Introduction
	1.1 Previous Work
	1.2 Layout

	2. Matrix Palette Skinning
	3. Skinning Without Normals Or Tangents
	4. Skinning With Normals And Tangents
	5. SSE3
	6. Results
	7. Conclusion
	8. References
	Appendix A
	Appendix B
	Appendix C
	Appendix D

