
Optimizing the Rendering Pipeline of Animated

Models Using the Intel Streaming SIMD

Extensions

by J.M.P. van Waveren, Id Software, Inc.

Most of today's computer games render animated polygonal models with real-time lighting and shadows.

The computer games DOOM* III (August 2004) and Quake* 4 (October 2005) are no exception. Both

computer games use a skeletal animation system. A polygonal mesh often referred to as a 'skin'

continuously changes shape with an underlying structure often referred to as a 'skeleton'. By animating

the skeleton the skin is transformed. The process of transforming the skin is referred to as 'skinning'. Both

games also use shadow volumes to define the regions in space that are in shadow of occluders. A shadow

volume is defined by a polygonal boundary representation of the volume containing the shadow of a

polygonal occluder.

The articles below provide an overview of the SIMD optimized rendering pipeline of animated models

which is equivalent, but superior in performance to the one used in the computer game DOOM III. This

improved rendering pipeline is implemented in the computer game Quake 4. Most of the rendering

pipeline runs on the CPU while several of the steps in the pipeline could run on a GPU as available on

many of today's graphics cards. However, running most of the pipeline on the CPU improves

compatibility across a wide range of systems. Older systems may have graphics cards (like the GeForce2

and GeForce4MX) that do not support the necessary features to perform animation and skinning on the

GPU. Graphics cards that do allow skinning on the GPU may have limitations that force large skeletal

models to be subdivided into multiple meshes which reduces efficiency. Furthermore the post-

transformed skin is needed to construct shadow volumes and current graphics cards do not allow this data

to be retrieved after it has been processed. Shadow volume construction can be offloaded completely to

the GPU but this may not improve performance if the occluders have high triangle counts or if there are a

lot of shadow casting light sources. For these reasons the computer games DOOM III and Quake 4 run

most of the pipeline on the CPU allowing the games to run on a wide range of system configurations.

Furthermore, the pipeline running on the CPU has virtually no limitations and the SIMD optimizations

make the pipeline competitive with (partial) GPU implementations.

The rendering pipeline can be subdivided into four general stages. These stages are animation, skinning,

shadow volume construction and clipping and rasterization. The figure below shows these stages as large

light gray blocks. Each stage is subdivided into smaller steps where the processed data is shown in slanted

boxes and the routines that process this data are shown in darker gray boxes. The numbers in the black

corners of these boxes correspond to the articles at the bottom that describe the routines and how they are

optimized using the Intel Streaming SIMD Extensions. The blue balloons show how many times faster

the SIMD optimized routines are relative to reference implementations in C/C++ when comparing the hot

cache clock cycle counts on an Intel® Pentium® 4 Processor on 90nm Technology.

The animation system can blend one or more animations. In the figure above only two animations are

shown but many more animations can be blended together to create a complex mixture of motion. An

animation is a sequence of animation frames. Each animation frame defines a pose of the skeleton as a list

of joint positions and orientations where the orientations are described with quaternions. The position and

orientation of a joint are relative to the parent of the joint in the hierarchy of the skeleton.

The system takes two frames for time t0 and t1 from an animation such that the current time is in between

t0 and t1. The system then interpolates between these two frames to get a pose of the skeleton for the

current time. The interpolated frames from all animations that are being played are then blended together

to get the final pose of the skeleton. Next the joint positions and quaternions are transformed into 3x4

matrices. Furthermore the joint matrices are transformed with the joint matrices of their parents to create a

skeleton in model space.

The skeleton in model space is used to animate a triangle mesh often referred to as skinning. Based on

whether the triangle mesh is used for rendering or only to create shadow volumes or for collision

detection the system can decide upon the best approach to skinning. If the model is not rendered with

diffuse, specular and normal maps there is usually no need to calculate normal and tangent vectors at

vertex positions. Time can be saved by not animating and calculating these additional vertex properties if

they are not needed. The approach to skinning that does calculate normal and tangent vectors requires the

joints of the skeleton to be transformed such that they are relative to the joints of a base pose which is

transformed to create the animated mesh.

In the next stage shadow volumes are constructed for every light source interacting with the triangle

mesh. A shadow volume defines the regions in space that are in shadow of an occluder in object space

with additional geometry. Shadow volumes can be constructed for point lights, spot lights and directional

light sources and always produce pixel-accurate but hard shadows. Before any shadow volumes can be

constructed the plane equations of the triangles in the triangle mesh need to be derived. These plane

equations are used to find the triangles that face towards or away from a light source and to determine the

shadow silhouette edges of the geometry. Such silhouette edges are the boundaries between lit and unlit

triangles.

In the last stage, which typically runs on the GPU, the triangle meshes and shadow volumes are clipped

and rasterized. The shadow volumes are rendered to the stencil buffer which is queried when the triangle

meshes are rendered on screen to determine which pixels are in shadow. To determine the regions in

space that are in shadow of a triangle mesh the stencil buffer is first cleared to all zeros. The shadow

volume for the triangle mesh is then rendered to the stencil buffer with an appropriate depth test. Front

facing shadow volume triangles increment and back facing triangles decrement the stencil buffer pixels.

Pixels with a stencil buffer value unequal zero are now considered in shadow.

The following table shows an overview of all the SIMD optimized routines that are used in the rendering

pipeline. The table shows the hot cache clock cycle counts of the routines on an Intel® Pentium® 4

Processor on 90nm Technology. The speedup factors of the routines are compared to reference

implementations in C/C++ that perform the same calculation. However, the C/C++ source is compiled to

code that runs on the regular stack based x86 FPU.

Routine Speedup

factor

Instructions

per iteration

Elements

per

iteration

Number of

iterations

Total

instructions

Total

clock

cycles

Clock cycles

per element

Clock cycles

per instruction

SlerpJoints 7.9 213 4 256 54549 131517 128 2.4 (2.411)

LerpJoints 4.8 132 4 256 33819 52848 52 1.6 (1.563)

ConvertJointQuatsToJointMats 1.8 34 1 1024 34823 34362 34 1.0 (0.987)

ConvertJointMatsToJointQuats 2.4 207 4 256 53003 73710 72 1.4 (1.391)

TransformSkeleton 3.0 45 1 1024 46093 54297 53 1.2 (1.178)

UntransformSkeleton 2.8 48 1 1024 49164 57285 56 1.2 (1.165)

TransformJoints 3.0 41 1 1024 41995 48906 48 1.2 (1.165)

TransformVerts 3.0 39 1 1024 39946 43956 43 1.1 (1.100)

TransformVerts (SSE3) 3.1 33 1 1024 33802 41963 41 1.2 (1.241)

TransformVertsAndTangents 2.6 80 1 1024 81930 89775 88 1.1 (1.096)

TransformVertsAndTangents (SSE3) 2.8 61 1 1024 62474 81855 80 1.3 (1.310)

DeriveTrianglePlanes 4.2 121 4 256 30990 36128 35 1.2 (1.165)

CountFacing 59.2 31 + 4 256 + 16 5 + 4 196 383 0.3 2.0 (1.954)

CountFacingCull 2.1 37 4 336 12454 13883 10 1.1 (1.115)

CreateSilTriangles 1.2 70 4 504 35300 36901 18 1.0 (1.045)

CreateCapTriangles 2.4 54 4 336 18170 14205 11 0.8 (0.782)

All the presented routines assume the processed data is in cache. Optionally prefetch instructions can be

added to the routines. However, prefetch distances do not only depend on the CPU type but also the CPU

speed, the memory speed, the cache speed, the number of cache levels and several other factors. As such

there is no prefetch distance that is optimal on all system configurations. The Intel manuals provide

metrics to optimize memory access for a specific configuration with the use of prefetch instructions. The

cache usage can generally be improved by pushing models down the pipeline one at a time. As such the

results of one step in the pipeline are written to memory through cache and quickly after fetched from the

cache during the next step in the pipeline.

Some of the hot cache clock cycle counts presented in the articles are slightly higher when the code is

executed on the newer Intel® Pentium® 4 Processor on 90nm Technology compared to the older Intel®

Pentium® 4 Processor on 130nm Technology. First of all these hot cache clock cycle differences between

these CPUs take nothing away from the performance improvements of the presented optimizations. The

Intel® Pentium® 4 Processor on 90nm Technology has a deeper pipeline and slightly higher hot cache

clock cycle counts are to be expected. However, the Intel® Pentium® 4 Processor on 90nm Technology

scales to higher frequencies and the increase in frequency made possible by this architecture is higher

than the increase in hot cache clock cycle counts due to the longer pipeline. Furthermore the Intel®

Pentium® 4 Processor on 90nm Technology has numerous improvements that in many situations actually

make it perform better in practice than an Intel® Pentium® 4 Processor on 130nm Technology running at

the same frequency. Some of the improvements of the Intel® Pentium® 4 Processor on 90nm Technology

architecture over the Intel® Pentium® 4 Processor on 130nm Technology include:

 Larger caches.

 Improved software and hardware prefetch.

 Better static and dynamic branch prediction.

 Increased scheduler queues for improved exploitation of parallelism.

 More instructions are recognized that may break the dependency chain.

 Reduced latency for some instructions like integer multiply and bit-wise logical shifts.

 New instructions like floating point to integer conversion with truncation, instructions for thread

synchronization and the Streaming SIMD Extensions 3 (SSE3).

The Intel® Pentium® 4 Processor on 130nm Technology scales from 1.6 GHz up to 3.4 GHz and comes

with 512 kB on-die cache. The Intel® Pentium® 4 Processor on 90nm Technology scales from 2.4 GHz

up to 3.8 GHz and comes with 1 or 2 MB on-die cache.

The following articles describe the individual routines used in the rendering pipeline and how they are

optimized using the Intel Streaming SIMD Extensions.

The following articles describe the individual routines used in the rendering pipeline and how they are

optimized using the Intel Streaming SIMD Extensions.

 Slerping Clock Cycles

 From Quaternion to Matrix and Back

 The Skeleton Assembly Line

 Fast Skinning

 Deriving Triangle Plane Equations

 Shadow Volume Construction

http://software.intel.com/sites/default/files/m/d/4/1/d/8/293747_293747.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/293748.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/293749.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/293750.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/293751.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/293752.pdf

